Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Extremwertaufgaben

Extremwertaufgaben

Schüler Fachoberschulen, 12. Klassenstufe

Tags: Extremwertaufgaben, Extremwertproblem

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
LaLeLu1987

LaLeLu1987 aktiv_icon

18:47 Uhr, 18.04.2010

Antworten

Hallo, ich hab im iNet eine Aufgabe (mit Lösung) gefunden, kann sie aber nicht nachvollziehen. Ich hab das Thema Extremwertaufgaben in der Schule leider verpasst. Vielleicht könnt ihr mir helfen.

Aufgabe:
Entlang einer Mauer soll eine rechteckige Fläche von 50 m² eingezäunt werden. Wie lang müssen die Seiten des Rechtecks sein, damit man möglichst wenig Zaun braucht?

Lösung:

Zielfunktion u(x,y) = x + 2y -> Minimum
NB xy = 50
y = 50x-1
einsetzen u(x) = x + 100x-1
differenzieren u'(x) = 1 - 100x-2
u''(x) = 200x-3
Min berechnen 1 - 100x-2 = 0
x = 10, y = 5
Kontrolle u''(10) = 200/1000 > 0 -> Minimum

DANKE!!!

Online-Nachhilfe in Mathematik
Antwort
Loobia

Loobia aktiv_icon

08:32 Uhr, 19.04.2010

Antworten
ein rechteck 50m2 soll ein gezaunt werden, wobei die eine seite eine mauer ist.

die fläche ist 50m2
A=xy=50m2

Umfang eines Rechtecks:

U=2x+2y
dabei ist ja eine seite eine mauer, also -y

U=2x+y

50m2=xy
50x=y


U=2x+50x=2x+50x-1
U'=2-50x-2
U''=100x-3

U’=0
0=2-50x-2
x2=25
x1|2=25=±5

U''=100(5)-3=0,8>0min
U''=100(-5)-3=-0,8<0max

50x=y
505=y
10=y


in meiner Rechnung ist das Rechteck breiter als hoch und bei dir ist es genau andersherum.

Ich habe gesehen, dass du diese aufgabe noch 2 mal gestellt hast, bitte schliesse die anderen. Danke!
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.