|
Ich stehe vor einem Problem. Vielleicht kann mir da jemand helfen.
Ich benötige den gewichteten Mittelpunkt von verschiedenen X-Y-Koordinaten.
. jede Koordinate besitzt ein bestimmtes Gewicht, welche den Mittelpunkte dementsprechend verschieben sollte.
Es können Koordinaten sein.
Gibt es da eine Lösung?
Ich danke euch bereits jetzt.
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
|
Edddi 
08:39 Uhr, 05.02.2016
|
kl. Beispiel mit 3 Einheitsmassen bei und
;-)
|
|
HUI... :-)
Ich glaube bei dem ersten Teil komme ich noch gut mit.
. man gewichtet die koordinaten einzeln und die koordinaten einzeln, wobei für die Masse . das "Gewicht" steht.(Stimmt das so? :-) )
Bei der Zusammenfassung stehe ich jedoch noch an. Wie muss ich das interpretieren?
|
Edddi 
08:59 Uhr, 05.02.2016
|
. Habe Vektor-Schreibweise benutzt. Für die Koord. einzeln siehts einfach so aus:
;-)
|
|
hmmm :-)
SP = Schwerpunkt
Ist es nicht so, dass mit dieser Formel, wenn ein Punkt eine sehr grosse Masse hat im Vergleich zu den anderen Punkten, der "Mittelpunkt" dann "ausserhalb" aller Koordinaten liegen kann? Oder verstehe ich etwas nicht richtig? :-)
oder muss normiert werden also . immer zwischen 0 und 1 liegen?
|
Edddi 
09:18 Uhr, 05.02.2016
|
. der Schwerpunkt kann hier nicht "außen" liegen. Für die Massen kannst du eingeben was du willst, sie sollten nur die gleiche Einheit haben.
;-)
|
|
ist das geil oder was? :-) Habe nun ein paar Beispiele mit Excel durchgespielt... Das funktioniert einwandfrei...
Vielen Dank für Deine Unterstützung.
|