Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Kreisgleichung aus 3 Punkten mit Gauß Algorithmus

Kreisgleichung aus 3 Punkten mit Gauß Algorithmus

Universität / Fachhochschule

Tags: Gauß Algorithmus, Kreisgleichung

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Niki04

Niki04

15:53 Uhr, 04.01.2018

Antworten
Hallo,
ich verzweifle an folgender Aufgabe:

Die drei Punkte P1(3,-1),P2(2,6) und P3(4,2) liegen auf einer Kreislinie. Berechnen Sie im folgenden die Gleichung des Kreises unter Verwendung des Gauß Algorithmus und geben Sie Mittelpunkt und Radius an.

Folgenden Ansatz habe ich mir gedacht:

Ich habe aus den drei Punkten Gleichungen gemacht mit f(x)=x^2a+xb+c

P1:9a+3b+c=-1
P2:4a+2b+c=6
P3:16a+4b+c

und das in Gauß-Tableau geschrieben

9,3,1|-1
4,2,1|6
16,4,1|2

jetzt würde ich sagen das System ist nicht lösbar, da rg(A) rg(A, b).

Und wie muss ich nach dem lösen des Gauß-Algorithmus weiter fortgehen?


Schon mal danke für die Hilfe!

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Online-Nachhilfe in Mathematik
Antwort
ledum

ledum aktiv_icon

16:18 Uhr, 04.01.2018

Antworten
Hallo
du setzest eine Parabel an, willst aber eine Kreis.
ein Kreis hat die Gleichung
(x-x:m)2+(y-ym)2=r2. man findet den Mittelpunkt auch, indem man die 2 Mittelsenkrechten der 2 Sehnen schneidet.
ausserdem kann man ja auch mal die 3 Punkte zeichnen!
Gruß ledum
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.