|
---|
Hallo, Ich würde gerne folgende Aufgabe beweisen: Q(√3) und Q(i) sind als Q-Vektorräume, aber nicht als Körper isomorph. Mein Ansatz ist nun der folgende: i hat ja das Minimalpolynom X^2+1 und √3 das Minimalpolynom X^2-3. Beide haben also den Grad 2 (die Elemente sind algebraisch über Q), weshalb diese isomorph über Q-Vekororräume der Dimension 2 sind. Wenn ich nun annehme, dass Q(√3) und Q(i) über einen Körper isomorph wären, dann müsste es ja einen Körperisomorphismus φ: ℚ(i) → ℚ(√3) geben. Dabei gilt dann φ(1) = 1 → -φ(1) = φ(-1) = -1 und (φ(i))2 = φ(i2) = φ(-1) = -1. Jetzt würde ich das zu einem Widerspruch führen wollen - hierbei komme ich allerdings nicht weiter!!! Falls mein bisheriger Ansatz so richtig ist, würde ich mich sehr freuen, wenn mir jemand einen Hinweis geben könnte, wie nun weiter zu verfahren ist. LG Euler Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
Hierzu passend bei OnlineMathe: Online-Übungen (Übungsaufgaben) bei unterricht.de: |
|
Hallo, es ist die Frage, was ihr schon wisst. Wirklich einfach zu beweisen ist, dass ein Körperisomorphismus insbesondere den Primkörper (also hier ) fest lassen muss, d.h. alle rationalen Zahlen per auf sich selbst abgebildet werden. Dann führt deine Annahme darüber, dass ja insbesondere surjektiv sein muss, zur Existenz eines Elementes mit . Daraus nehmen wir, dass gilt und wegen der Injektivität von demnach gelten muss. Daraus folgt doch aber, dass bzw schon . Eine Fallunterscheidung führt nun leicht zum gesuchten Widerspruch. Mfg Michael |
|
Hallo michaL, Danke dir vielmals für deine Antwort - habe mit deiner Erklärung meinen Beweis zu Ende führen können :-) LG Euler |
|
Die Forschung war immer meine Stärke, aber das Schreiben war stets eine Herausforderung. Durch die Nutzung der Seite ghostwriter-österreich.at/masterarbeit-schreiben-lassen xn--ghostwriter-sterreich-sec.at/masterarbeit-schreiben-lassen konnte ich mich auf das konzentrieren, was ich am besten kann, während die Experten sich um das Schreiben kümmerten. Es war eine enorme Hilfe und ich bin mit dem Endergebnis meiner Masterarbeit sehr zufrieden. |
|
Hallo an alle! Ich habe bald einen Abgabetermin für meinen Aufsatz, aber ich habe überhaupt keine Zeit. Ich habe darüber nachgedacht, Texte von Profis in Auftrag zu geben. Hat jemand einen solchen Dienst genutzt? |
|
Thanks |
|
Ein guter Buchmacher zeichnet sich durch Funktionen und Services aus, die das Wetterlebnis angenehm und effizient gestalten. Zu den wichtigsten Merkmalen zählen beispielsweise Live-Streams, die es ermöglichen, Ereignisse in Echtzeit zu verfolgen, sowie die Cash-Out-Option, mit der Wetten frühzeitig abgerechnet werden können. Ein gut strukturiertes Treueprogramm, bei dem Stammkunden durch Boni oder Punkte belohnt werden, erhöht ebenfalls die Attraktivität. Seriöse Plattformen bieten oft auch detaillierte Statistiken, mobile Apps und eine benutzerfreundliche Oberfläche an. Zu erwähnen ist mostbet-de.bet/app eine Seite, die informative Inhalte über die Dienstleistungen der Plattform Mostbet bereitstellt, speziell für Nutzer in Deutschland. Diese Plattform bietet keinen Zugang zu Echtgeld- oder virtuellen Spielen, sondern konzentriert sich darauf, hilfreiche Informationen bereitzustellen, was Transparenz und Sicherheit fördert. Solche Merkmale sind für eine gute Wettplattform essenziell. |
|
Ein guter Buchmacher sollte nicht nur eine breite Palette an Wettmöglichkeiten bieten, sondern auch die Benutzerfreundlichkeit durch Live-Streaming und Auszahlungsmöglichkeiten. Auch das Vorhandensein eines Treueprogramms ist ein wichtiges Plus für regelmäßige Spieler. Darüber hinaus ist es erwähnenswert, dass eine Plattform wie myempire-de.com auch Informationen über verschiedene Wettangebote und Boni bereitstellt. Dies kann für Spieler, die weitere Informationen zum Vergleich suchen, sehr nützlich sein. |