Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Stochastik - Kumulierte Binomialverteilung

Stochastik - Kumulierte Binomialverteilung

Schüler Gymnasium, 12. Klassenstufe

Tags: Kumulierte Binomialverteilung, Stochastik, Wahrscheinlichkeitsverteilung

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
zezima

zezima aktiv_icon

23:36 Uhr, 19.11.2010

Antworten
Ein Multiple-Choice-Test enthält 20 Fragen. Zu jeder Frage gibt es drei Antwortmöglichkeiten, von denen jeweils genau eine richtig ist. Der Test gilt als nicht bestanden, wenn nicht mehr als 10 Fragen richtig beantwortet werden. Mit welcher Wahrscheinlichkeit fällt man durch, wenn man alle Fragen auf gut Glück durch zufälliges Ankreuzen beantwortet?

Ich brauche dringend Hilfe, weiß wirklich nicht wie ich vorgehen muss.
Als Tip kann ich hinzufügen, dass man eine kumulierte Wahrscheinlichkeitstabelle braucht.
Ich bedanke mich schon im voraus für alle die Versuchen mir weiterzuhelfen.
:-D)

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich benötige bitte nur das Ergebnis und keinen längeren Lösungsweg."
Hierzu passend bei OnlineMathe:

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
DerCommander

DerCommander aktiv_icon

09:46 Uhr, 20.11.2010

Antworten
auch hier binomialverteilung
n=20
p=13
zu berechnen: wahrscheinlichkeit nicht mehr als 10 fragen zu beantworten: P(x10)=P(x=0)+P(x=1)+...+P(x=10)
zezima

zezima aktiv_icon

17:50 Uhr, 21.11.2010

Antworten
??? das kann glaub ich nicht richtig sein, da wir dann auf 4,3511 kommen. und wir wissen das eine wahrscheinlichkeit nicht größer sein kann als 1

Hoffe mir kann jemand weiterhelfen
Antwort
-Noname-

-Noname- aktiv_icon

18:12 Uhr, 21.11.2010

Antworten

obige antwort muss stimmen

rechnest du das einzel aus oder liest du es aus einer tabelle aus?

falls dus rechnest: (beispiel)

( n k ) * p k * ( 1 p ) n k = P ( x = k )



P ( k = 0 ) = ( 20 0 ) * 1 / 3 0 * 2 / 3 20

aufsummieren bis k=10 gibt bei mir überschlagen nicht mehr als 1

zezima

zezima aktiv_icon

18:25 Uhr, 21.11.2010

Antworten
Aber muss ich denn nicht die Werte aus der kumulierten Wahrscheinlichkeitstabelle verwenden???
Hier auf dieser Abbildung ist meine Tabelle

tabelle
zezima

zezima aktiv_icon

20:30 Uhr, 21.11.2010

Antworten
Kann mir wirklich niemand weiterhelfen??? :(
zezima

zezima aktiv_icon

20:33 Uhr, 21.11.2010

Antworten
Kann mir wirklich niemand weiterhelfen??? :(
zezima

zezima aktiv_icon

20:33 Uhr, 21.11.2010

Antworten
Kann mir wirklich niemand weiterhelfen??? :(
zezima

zezima aktiv_icon

20:33 Uhr, 21.11.2010

Antworten
Kann mir wirklich niemand weiterhelfen??? :(
Antwort
DerCommander

DerCommander aktiv_icon

17:20 Uhr, 22.11.2010

Antworten
wenn die tabelle schon kumulierte wertetabelle heißt, dann fast sie schon die einzelterme P(x=0)+...+P(x=10) zusammen. was du aus dieser tabelle abliest ist dann nicht P(x=10) sondern !!!!!!!!!P(x10)!!!!!!!
dir muss der unterschied von P(x=10) und P(x10) schon bewusst sein, um die aufgabe zu lösen.
Frage beantwortet
zezima

zezima aktiv_icon

15:45 Uhr, 19.01.2011

Antworten
Vielen Dank für eure Hilfe ;D