Hossa :-)
Vektorfelder und ihre Potentiale stehen in folgendem Zusammenhang:
In deinem Fall haben wir zwei Dimensionen und die obige Gleichung lautet:
Setzen wir das Vektorfeld ein, finden wir:
Die untere Gleichung ist die einfachere, weil auf der linken Seite überhaupt nicht auftaucht:
Integration nach ergibt:
Dabei ist die Funktion quasi eine "Integrationskonstante", die beim Ableiten nach wieder verschwinden würde. Wir wissen also, dass folgende Form haben muss:
Zur Bestimmung der "Integrationskontante" nutzen wir die erste Gleichung und setzen darin ein, soweit wir es schon kennen:
Ganz links und ganz rechts stehen nun zwei Terme, in denen vorkommt, so dass wir diesen Anteil auf beiden Seiten subtrahieren könnnen. Übrig bleibt:
bzw. integriert:
Damit ist das Potential fertig gebaut:
Ok?
|