Hallo, ich muss einen Vortrag in der Schule über Differentialgleichungen halten. Ich habe nun schon die Herleitungen der Differentialgleichungen für das exponentielle Wachstum und das beschränkte Wachstum. Nun bin ich beim logistischen Wachstum und hänge fest. Kann mir jemand bitte erklären, wie ich von der Funktion wobei ist, auf die Differentialgleichung komme. Überall im Netz steht nur, wie man von der Differentialgleichung auf die Funktion kommt aber nirgendwo, wie es anders rum geht. Die Ableitung habe ich schon bestimmt: Ich brauche dringend eure Hilfe.
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
Hallo
warum willst du aus der Funktion auf die Dgl schließen? wenn du das unbedingt musst schreib mal auf, was ist. mit der dir bekannten funktion und dann vergleiche mit der Ableitung wenn du über Dgl redest, sollte man eigentlich sagen, wie man auf die kommt, und daraus die Funktion bestimmt, nicht umgekehrt. Gruß ledum
|
Ich weiß, dass es normalerweise andersrum ist Was meinst du mit normalerweise? Es ist doch so, dass man einen Vorgang beobachtet und ein mathematisches Modell dazu sucht. Konkretes Beispiel: An einer Schüler mit Schülern verbreitet ein einzelner Schüler das Gerücht, dass nächste Woche schulfrei ist. Das Gerücht verbreitet sich sich jetzt dermaßen, dass jeder, der von dem Gerücht erfährt, dieses zwei weiteren Schülern erzählt. Gefragt ist nun nach einer Funktion die für jeden Zeitschritt angibt, wieviele Schüler von dem Gerücht Kenntnis haben. Jetzt könnte man als ersten Ansatz mal überlegen, dass der Zuwachs umso größer ist, je mehr Schüler es gibt, die das Gerücht schon kennen und weiter erzählen. Das heißt, dass die Ausbreitungsgeschwindigkeit proportional zur Anzahl der Schüler die das Gerücht kennen, ist. Also . Da würde auf simples exponentielles Wachstum führen. Dann könnte man aber erkennen, dass dieses Modell mangelhaft ist, weil ja die Menge der Schüler mit begrenzt ist und wenn schon fast alle das Gerücht gehört haben, erzählen es zwar viele weiter, aber die Anzahl derer, die es noch nicht wussten, wird sich kaum mehr signifikant erhöhen. Anfangs, wenn noch kaum jemand von dem Gerücht Kenntnis hat, wächst die Anzahl der "Wissenden" also schneller. Da könnte man also auf die Idee kommen, dass die Ausbreitungsgeschwindigkeit proportional zur Anzahl derer ist, die das Gerücht noch nicht kennen . Ein ganz guter Ansatz ist dann eben die Kombination der beiden obigen Modelle, nämlich eine Funktion zu suchen, die der Gleichung genügt (du kannst dir denken). Die Lösung dieser DGL ist dann eben die von dir angegebene Sigmoide.
aber ich würde gerne die Differentialgleichung aus der allgemeinen Funktion für das logistische Wachstum bestimmen. Das ist zwar leicht möglich, aber ich sehe dafür eigentlich keinen vernünftigen Grund. Um das trotzdem zu machen, bildest du die Ableitung von und knetest sie so lange, bis der gewünschte Ausdruck da steht: .
Alternativ kannst du auch, wie . von ledum vorgeschlagen, einfach die Funktion und deren Ableitung in die vorgegebene DGL einsetzen und somit wenigstens zeigen, dass diese erfüllt ist. Eine Herleitung der DGL wäre das aber dann nicht.
|