Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Dreiseitiger Pyramidenstumpf

Dreiseitiger Pyramidenstumpf

Schüler Gymnasium, 10. Klassenstufe

Tags: Grundfläche berechnen, Pyramide, Stumpf, Volumen

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
hoffe1899

hoffe1899 aktiv_icon

19:40 Uhr, 13.03.2011

Antworten
Hallo!
Sitze grad an einer Matheaufgabe und komme einfach nicht weiter... :(
Also die Aufgabe lautet:
Bastle einen dreiseitigen Pyramidenstumpf, mit der Grundfläche eines Dreiecks und dem Volumen V=1440cm^3.

Dafür brauche ich dann ja die Maße der verschiedenen seiten.
für V habe ich mir die formel V=3÷12 (a1+a2)² h.
hierbei sind a1 und a2 die seitenlängen der beiden dreiecke, die entstehen (eins oben, eins unten).
h ist die höhe des stumpfes.
Jetzt hab ich die gleichung erstmal nach h umgestellt :

h=(12V)÷((a1+a2)3)

Und jetzt habe ich einfach mal für a1=16 und für a2=12 cm eingesetzt.
Dann erhalte ich ja h.
und dann weiß ich, dass wenn a1=16cm und a2=12cm und h=10,0741cm, dann ist V=1140cm^3

Bis hierhin bin ich ohne probleme gekommen.
Jetzt muss ich das ja allerdings zeichnen, um es zu basteln.
Der Mantel des Stumpfes besteht ja aus drei trapezen.
um diesen mantel zu zeichnen, reicht mir das oben errechnete also nicht, da ich auch die höhe des trapezes benötige. Allerdings weiß ich nicht, wie ich diese errechnen kann, um den Mantel dann schließlich zu zeichnen.
Hat vielleicht jemand einen tipp?
oder muss man die aufgabe vllt auch ganz anders angehen?
Brauche die Rechnung wirklich dringend!
wäre also seeeehr dankbar über eure hilfe.
und wenn ihrs auch nicht wisst, vllt können wir zusammen zum ergebnis kommen


Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Hierzu passend bei OnlineMathe:
Pyramide (Mathematischer Grundbegriff)
Kugel (Mathematischer Grundbegriff)
Kegel (Mathematischer Grundbegriff)

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.