![]() |
---|
Hey, ich habe mal wieder ein Problem! Gegeben ist die Funktion und dazu muss ich eine Ursprungsgerade finden, die den Graphen berührt. Dann muss ich den Berührpunkt nennen! Ich habe schon die Lösung, von meinem Lehrer, ich weiß aber nicht, wie man darauf kommt! Die Gleichung lautet Ich habe auch schon Ansätze: Also ich muss ja ne Gerade mit y=mx+b finden und ist da die Gerade ja durch den Ursprung verläuft. Also muss ich ja nur noch ausrechnen. Dazu habe ich schon einige Gleichungen: m=((lnx)^2)/x und m=f´(x)=(2lnx)/x Und jetzt sollten wir in der Schule irgendwie rechnen: ((lnx)^2)/x=(2lnx)/x und da kommt dann irgendwie raus...aber ich weiß nicht, wie ich darauf komme, dass ist.... Und wenn ich es richtig mitbekommen habe ist der Berührpunkt (e^2\4) Wie komme ich darauf? Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
Hierzu passend bei OnlineMathe: Kurvendiskussion (Mathematischer Grundbegriff) |
![]() |
![]() |
Gegeben ist die Funktion da fehlt noch was |
![]() |
Oh stimmt..sorry Gegeben ist natürlich: f(x)=(lnx)^2 |
![]() |
es gibt nur eine Ursprungsgerade, die diesen Graphen berührt und nicht irgendwo anders schneidet, und das ist die x-Achse, siehe: www.wolframalpha.com/input/?i=plot+y%3D%28ln%28x%29%29%5E2%2C+x%3D0+to+8 stimmt deine Angabe? |
![]() |
ah, wahrscheinlich ist gemeint, sie soll den Gaphen berühren, darf ihn aber auch gleichzeitig woanders schneiden |
![]() |
Also wir haben diese Angaben, die ich genannt habe in der Schule gemeinsam gemacht Ich suche eine Gerade die durch den Urspung geht und dann irgendwo rechts vom Ursprung den Graphen berührt... |
![]() |
du musst lösen: nun nimm eine der beiden Gleichungen mit und setze für ein: |
![]() |
Lösungsidee: die Steigung der Ursprungsgeraden ist . Das muss auch die Steigung des Graphen im Berührpunkt sein, also . Mit der Kettenregel bekommst du und damit . Damit muss sein. Daraus folgt oder also oder . |
![]() |
Vielen Dank, jetzt habe ich es auch verstanden :-) |
![]() |
Okay, dankeschön :-) |