Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Stammfunktion f(x)= ln(x+1)

Stammfunktion f(x)= ln(x+1)

Schüler Gymnasium, 12. Klassenstufe

Tags: ln-Funktion, Logarithmus, Stammfunktion

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Fragezeichen89

Fragezeichen89 aktiv_icon

17:22 Uhr, 24.02.2008

Antworten

Kann mir bitte jmd. den Lösungsweg der dazugehörigen Stammfunktion

f(x)= ln(x+1)

nennen?

Hierzu passend bei OnlineMathe:
Bestimmtes Integral (Mathematischer Grundbegriff)
Stammfunktion (Mathematischer Grundbegriff)
ln-Funktion (Mathematischer Grundbegriff)
Logarithmusfunktion (Mathematischer Grundbegriff)
Rechnen mit Logarithmen

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
fhuber

fhuber aktiv_icon

17:35 Uhr, 24.02.2008

Antworten

Es gilt: ln ( x ) d x = x ln ( x ) x + C .

 

Der Beweis ist schlichtes Ableiten (Produktregel).

Damit solltest Du eigentlich die Stammfunktion zu Deiner Funktion ermitteln können.

Fragezeichen89

Fragezeichen89 aktiv_icon

19:09 Uhr, 24.02.2008

Antworten
ok danke aber iwie komm ich mit dem fall nicht klar. Um die Stammfunktion zu bekommen muss man ja die partielle Integratoion machen aber ich bekomme das hier iwie nicht hin



also mein stand:



f(x)=ln(x+1)



u=ln(x+1)

u'=1/(x+1)

v=x

v'=1



F(x)= [x*ln(x+1)] - Integral( x* 1/(x+1) )

ist das richtig und wie mach ich weiter?
Antwort
fhuber

fhuber aktiv_icon

19:29 Uhr, 24.02.2008

Antworten

Ja, das ist soweit richtig.

Das Problem ist, dass Du das hintere Integral wiederum nicht direkt lösen kannst.

Deswegen muss Du hier nochmals partiell integrieren.

Fragezeichen89

Fragezeichen89 aktiv_icon

19:38 Uhr, 24.02.2008

Antworten
wie leite ich 1/(x+1) ab?

Fragezeichen89

Fragezeichen89 aktiv_icon

19:42 Uhr, 24.02.2008

Antworten
könntest du mir einmal bitte den nächsten schritt sagen, also wie ich weiter integrieren muss?
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.