![]() |
---|
Wenn ein Stein ins Wasser geworfen wird, geht vom Aufprall punkt eine kreisförmige Welle aus. Die Wellenfront ist dabei ein Kreis mit wachsendem Radius . Es sei der Flächeninhalt eines solchen Kreises in Meter, in Quadratmeter). Gib eine Formel für die Zunahme des Flächeninhalts im Radiusintervall an und berechne mit dieser Formel die Zunahme des Flächeninhalts in den Radiusintervallen und Gib eine Formel für die mittlere Änderungsrate des Flächeninhalts im Radiusintervall an und berechne mit dieser Formel die mittlere Änderungsrate des Flächeninhalts in den Radiusintervallen und Gib eine Formel für die Änderungsrate A’(r) des Flächeninhalts beim Radius an und berech ne mit dieser Formel die Änderungsrate des Flächeninhalts bei den Radien 1 und Bei wel chem dieser beiden Radien ändert sich der Flächeninhalt stärker? Worauf ich gekommen bin: (Flächeninhalt des Kreises) Ich bräuchte bitte eine detaillierte Erklärung. Eigentlich kenn ich mich mit dem Thema aus, aber bei der Aufgabe bin ich irgendwie blank. Ich freue auf jede Unterstützung! Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.) |
Hierzu passend bei OnlineMathe: Differenzenquotient (Mathematischer Grundbegriff) Ableitung (Mathematischer Grundbegriff) Kreiszahl (Mathematischer Grundbegriff) Kreis (Mathematischer Grundbegriff) Elementare Kreisteile (Mathematischer Grundbegriff) Online-Übungen (Übungsaufgaben) bei unterricht.de: |
![]() |
![]() |
Die Formulierung der Aufgabe ist etwas eigenartig und die Bezeichnungen und für inneren und äußeren Kreisradius ungewöhnlich. Die Formel für die Kreisfläche hast du gefunden. Die im Punkt gesuchte Formel soll offenbar einfach die Differenz der Flächeninhalte der Kreise mit Radius und mit Radius ausdrücken. Schaffst du es, diese Funktion . aufzustellen und damit und zu berechnen? Für Aufgabe wird diese Funktion dann nicht mehr benötigt, sondern nur mehr die von dir angegebene Funktion . Leite sie ab und setze dann als Argument und ein und vergleiche die Ergebnisse. mehr ist bei nicht verlangt. Für Multiplikationen verwendest du hier besser den Stern (die Forensoftware macht einen Multiplikationspunkt daraus) und nicht ein welches man ja irrtümlich für eine Variable halten könnte. |
![]() |
Aufgabe Ich bin auf die Formel z^2⋆pi - r^2⋆pi gekommen. Also für ist mir 3⋆pi rausgekommen; für 5⋆pi Aufgabe Mittlere Änderungsrate = Differenzenquotient, da hab ich es so gemacht, wie in der Schule. Durch Vereinfachen bin ich auf pi⋆(z+r) gekommen. Dann habe ich eingesetzt. pi⋆(2+1)= 3pi pi⋆(3+2)= 5pi Da wird ja der Limes/Grenzwert benötigt oder? strebt Richtung . Ich kann ja "pi⋆(z+r)" verwenden und davor schreiben. Ich gehe davon aus, dass so nah wie möglich an herankommt und deswegen sogar sein kann. Also setze ich für ein, also habe ich pi⋆(r+r) stehen = 2r⋆pi (=Umfang eines Kreises?) Jetzt muss ich da einsetzen, also habe ich 2⋆1⋆pi = 3pi und 2⋆3⋆pi = 6pi . Rein vom Hinschauen her würde ich behaupten, dass die Änderung mit 6pi größer ist. Stimmt das alles, was ich da gemacht habe? |
![]() |
Hallo Alles perfekt und natürlich richtig! |
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.
|